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Abstract

A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is

proposed that allows its use for commonly encountered classes of problems that are currently solved

with the extended Kalman filter. This extension allows the system to be partitioned in such a way as

to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and

control to be optimally decentralized.
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Introduction

A distributed system consisting of K nodes interconnected via a communications network could be

controlled using a decentralized controller framework that operates in parallel over the network. For

such problems, a solution that minimizes data transmission requirements, in the context of state

estimation of Gauss-Markov systems for distributed processing of local data and their integration

for constructing optimal global estimates, has been given by Speyer [1]. In [1], the decentralized

estimator was placed in a linear-quadratic-Gaussian (LQG) control setting. Generalizations of [1]

may be found in [2] and [3], and in [4], this work served as the basis for a fault-tolerant multi-

sensor navigation architecture. In [5], the decentralized LQG control is extended to the decentralized

linear-exponential-Gaussian control which is related to deterministic 7-/_ control synthesis.

As literally formulated in [1], the approach is valid for linear time-invariant systems only. As

with the standard LQG problem, extension to linear time-varying systems requires that each node

propagate its filter covariance forward and controller Riccati matrix backward at each time step.

Furthermore, commonly used ad hoc techniques for problems with nonlinear state and output rela-

tions such as the extended Kalman filter (EKF) violate certain linerity assumptions inherent in the

decentralization of the estimation process developed in [1].

The contribution of this paper is to extend the linear decentralized controller of [1] in a somewhat

similar fashion to the extended Kalman filter. This extension allows the system to be partitioned in

such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the

estimation and control to be optimally decentralized.
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Problem Statement

It is desired to minimize over US(t),j = 1,2,... ,K,

K }]+ ]_[uJ(t) - uRJ(t)]_vJ(t)[uJ(t)- uRJ(t)] dt
/=1

subject to

J[_ {[X(t) - XR(t)]VW(t)[X(t) - XR(t)]

(1)

K

2(0 : f(X,t) + _ W(UJ,t) + G(t)w(t);
j=l

K

f(R(t) = f(XR't) + E W(URi' t);
j=l

X(tl ) : X l (2)

x_(t,)=x_ (3)

Yi' =g 3(X,ti)+vi; j= I,2,... ,K (4)

where

E[{X1- X1R}] : O_

s[_(O]= 0;

s[v{] = 0;

s[{x,- x,gw(t) T] = 0;

s[{x, - x19{v{F] = 0

s[{x, - x_}{x, - x2} T] = p,

s[w(t)wO-)T] = q(t)5(t- _-)

j j T j ¢ T[_,{v,}] os[v,{v_}]=r_{,5,,_;S =

S[w(t){v{} T] =0

(5)

(6)

(7)

(8)

In some applications, it may be desired to control only some linear combination of the state

deviations from the reference,

z(t) = M[X(t)- XR(t)] (9)
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In such a case,

2

+ _[us(t) _ u'J(t)]TvJ(O[uqt) _ u'J(t)] at
j=l

The problem is then transformed by using SN = MTSNM and W(t) = MT|?VM in Eq.1.

The centralized solution is well-known (sampled data with zero-order hold) [6]:

(lO)

= _,[x,- xR(t,)] + uRJ(t,) (11)

Here L{ is determined from

L_ -- [_dJ(_i_t_l,_i) _- [/_(_i_t_1, _i)] Tsi_t.lj_jd(ti+l,_i)] -1 [BJd(ti+l,_i)] T _iTl¢(ti+l,ti) (12)

where

(_(t, r) = A(t)@(t, r); _5(r,r) = I (13)

t
B_(t, ti) = O(t,v)BJ(T)dr

ti+lWd(ti+_,ti) = O(t, ti)Tw(t)_(t, ti)dt
Jr,

• fti+lVJ(ti+_,ti) = [B_(t, ti)-rw(t)B_(t, ti) + VJ(t)] dt
,2 t_

(14)

(15)

(16)

A(t) = Of]
x=xR(t)

and Si is swept backward from SN using

BJ(t)- °_/ I-ff_ uJ=u_J(t)
(17)

Si O(ti+,,ti) T Si+l(_(ti+,,ti) + Wa(ti+l,ti)

K

__ _(L_)T [VdJ(_i+l,_i) .__ [_(ti+l, t T B j,)] &+, _(t,+,,_,)]
j=l

-1 j
Li (18)



The state estimate Xi is generated by the "continuous/discrete" extended Kalman filter:

^

Xi

P(t)

-_. p(_i)H?(HiP(ti)H ? .._ ]_i)-1; p(tl ) __. P1

= 2(t_)+ Ii_[Y_-g(2(t_),ti)]; X(tl)= 2,

= (I- K_H_)P(t_)(I- K_H_)T + I(_ttd([ =

K

= f(X,t) + _ _(uJ,t); R(t_) = ._:'_
3"=1

= @(t,tOPi@(t,ti) T + Qd(t,t_)

'_ 'H[]/3(t/)-1 q- E(HJ)T(/_i) -
j=l

(19)

(20)
-1

(21)

(22)

(23)

whereY//=[Ir_I;y/2; YTQ = = diag([R_, 2•'', , J' g [gl;g2;... ,gt,'],Ri Ri,... ,R_]), emd

ogI (24)Hi - OX x=X(ti)

= _,(t,,-)Qff)_(t, _-)_d_ (25)

= o; E[(21- x1)(2_- x,) _] = P, (26)

Problem Solution

As in [1], decompose the state space into a control-dependent partition and a data-dependent parti-

tion:

XC(t,) = f(,, 2D(t,) = 0 (27)

Define

[1_ = Yi j - f (Xe (ti), ti) (9.8)
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then a local, linearized Kalman filter (LKF) operating only on the local data is

where

I( j = pJ(ti)[H[]-r(H{PJ(ti)[HJilT + R_)-I; PJ(tl) = t51 (29)

&Dj = 2DJ(ti) + I([ [[1_-- HJ2DJ(ti)] (30)

_ _ k-j J -i m (31)pJ = (! Iq[H[)PS(td(I I([Hi) T + t _R_(I_)

2Dj(t) = _(t, ti)._DJ (32)

PJ(t) = O(t, ti)PJO(t,ti) m + Oe(t, ti) (33)

• OgJ (34)

H_ = _ x=xc(.)+_,(t,)

Note that Eqs. 29 - 31 can be iterated by evaluating Eq. 34 with the previous iteration's value for

k_J in place of 2DJ(t_). In some applications, the accuracy of ._Dj can thus be improved.

Now the algorithm of [1] can be utilized. This algorithm is based on writing 2 D as a linear

combination of the local estimates 3:Dj and an additional data-dependent vector calculated locally:

K

= E +hi] (35)
j----1

where

hi J ci_'J(t,); h{ 0= Fihi_ 1 + =

j-1 j
F, = I- E Pi(H[)T(R! ) Hi O(ti,t,_,)

j=l

a{ = F&_,(p/_,)-'_(_,,t,_,)-' - p,(ff)-i

= P,Pcle(t,,t__l)

(36)

(37)

(3s)

The essense of the algorithm of [1] is that one need not reconstruct the globally optimal state ff:D

via Eq. 35 if one only needs to compute the globally optimal control. Instead, define

o_fj -_ [B_( ti+l, _,i)]T Si+ l _( ti+ l, ti ) [pi(pJ)-l_/Dj _._ h_ 1 (39)



Then, Eqs. 11and 12can be rewritten as

= B j ti)]Tsi+,B_(ti+,,uJ(td [yj(_+,,_O+[ _(t_+_, t_)]-_
[

X _[SJd(ti.t_l,ti)]Tsi_kll_(ti+l,ti)[2_ri C -- XR(ti)]
[

(40)

Note that even though the approach does not require a global Kalrnan filter, it does require the

global covariance matrix Pi in Eqs. 37, 38, and 39. Fortunately, Eqs. 21 and 23 do not require the

measurement data, but Eq. 21 does require knowledge of the information contribution of each node,

(tt[)T(R[) -1 tt[. This consideration will be addressed below.

Chang [7] shows that at least Eqs. 36 and 38 can be avoided if instead of maintaining both _:_J

and h i independently, they are combined in a single vector, defined as follows:

so that

_[ = P,(b/)-'C j + A,': (41)

_j ""
_i = [Be(ti+l,ti)] T si+,_(ti+,,ti)¢_

Reference [7] shows that a recursion for ¢{ is

"J'J" cJ(t) _(t, ti)_],

(42)

_{ =o (4a)

If there is no reason to maintain a locally optimal state estimate, then Eqs. 30 and 32 can also be

avoided.

Remarks

Note that the nonlinear state and output relations, Eqs. 2 and 4, appear nowhere in Eqs. 35-41.

Partitioning all of the initial condition information into X c allows the local Kalman filter to directly

operate only on x Dj and hence remain linear.



In either the original, linear formulationor thecurrentextendedformulation, the control-dependent

and data-dependentpartitions of the state will tend to individually divergefrom the truth asmore

data are incorporated and more controls are executed. This is not an issue for the linear problem,

but in the present case, it could cause the linearizations to be compromised. Therefore, it is impor-

tant that evaluations of partial derivatives such as Eqs. 34 and 17 be evaluated on either the desired

trajectory X R or the locally optimal whole state estimate, X c + 2 Dj. An iterated update may also

be desirable.

In certain applications, the control may only be active during a finite time interval, but the esti-

mator may nevertheless continue to operate at all times. In such circumstances, it may be appropriate

to revert to the EKF when the controller is inactive. Then, as each actuation epoch arrives, the LKF

would be re-initialized using the latest EKF state estimate.

As mentioned previously, the local reconstruction of the globally optimal control requires that the

covariance of the global state estimate, although not the global state estimate itself, be maintained

at each node. This presents some difficulties.

local nodes, Hie, C 7_ j, are required by Eq. 21.

The measurement partial derivatives for the non-

According to Eq. 34, the non-local data-dependent

state partitions, 2 De, are required, implying an additional inter-node communication requirement.

However, as mentioned above, Eq. 34 can instead be evaluated on the desired trajectory X R, which

is the same at all nodes. This procedure will however deny the possibility of an iterated update. In

fact, it could be argued that the globally optimal covariance should be computed using the globally

optimal data-dependent state partition, 2 D, which is unavailable at any node. In practice, it may be

adequate to merely compute H e, _ -¢ j using local information, accepting the induced suboptimatity

in the reconstruction of the global covariance.

A more significant practical issue with the local reconstruction of the globally optimal covariance



is that the measurementupdates may not occur at uniform intervals at all the nodes. In fact, if

as is typical, the local Kalman filters employ an editing procedure, the covarianceupdate interval

becomesnon-deterministic. Theseissuescanbe addressedby requiring the additional transmission

of a semaphore from each node to all the other nodes every time a local measurement is successfully

incorporated. The semaphore can be as simple as a single bit, which when positive, indicates that the

global covariances at the other nodes should be updated to reflect that a measurement was processed

by the node transmitting the semaphore.

In [2], reference [1] is significantly generalized, and it is shown that the local estimators need

not share the state space of the implicit globally optimal centralized estimator, under the restriction

that linear relationships among the elements of the measurement vector present in the global model

are preserved in the local model. A restricted subset of such conditions is the case in which the

local model's states are a subset of the global model's states. The present work applies only to this

restricted case.

Conclusions

A straightforward, ad-hoc extension of [1] is proposed that allows its use for commonly encountered

classes of problems that are currently solved with the extended Kalman filter. As such, the proposed

approach shares many of the limitations of the EKF, such as a lack of guaranteed stability. Neverthe-

less, it can be expected that the wide successful usage of the EKF implies that the current approach

will suffice for many problems of practical interest.
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